Edge-over-Erosion Error Prediction Method Based on Multi-Level Machine Learning Algorithm
نویسندگان
چکیده
As VLSI process node continue to shrink, chemical mechanical planarization (CMP) process for copper interconnect has become an essential technique for enabling many-layer interconnection. Recently, Edge-over-Erosion error (EoE-error), which originates from overpolishing and could cause yield loss, is observed in various CMP processes, while its mechanism is still unclear. To predict these errors, we propose an EoEerror prediction method that exploits machine learning algorithms. The proposed method consists of (1) error analysis stage, (2) layout parameter extraction stage, (3) model construction stage and (4) prediction stage. In the error analysis and parameter extraction stages, we analyze test chips and identify layout parameters which have an impact on EoE phenomenon. In the model construction stage, we construct a prediction model using the proposed multi-level machine learning method, and do predictions for designed layouts in the prediction stage. Experimental results show that the proposed method attained 2.7∼19.2% accuracy improvement of EoE-error prediction and 0.8∼10.1% improvement of non-EoE-error prediction compared with general machine learning methods. The proposed method makes it possible to prevent unexpected yield loss by recognizing EoE-errors before manufacturing. key words: Edge-over-Erosion,CMP, manufacturability, machine learning
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملTransparent Machine Learning Algorithm Offers Useful Prediction Method for Natural Gas Density
Machine-learning algorithms aid predictions for complex systems with multiple influencing variables. However, many neural-network related algorithms behave as black boxes in terms of revealing how the prediction of each data record is performed. This drawback limits their ability to provide detailed insights concerning the workings of the underlying system, or to relate predictions to specific ...
متن کاملAn Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market
Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 97-A شماره
صفحات -
تاریخ انتشار 2014